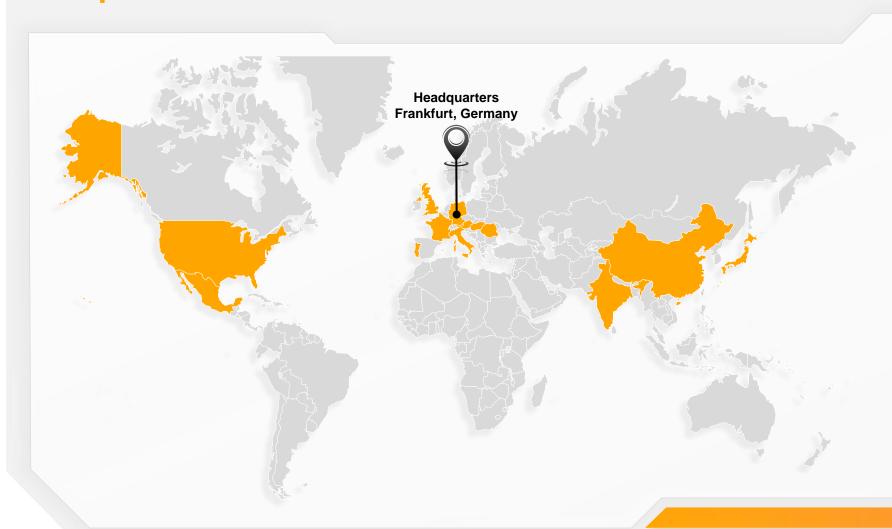


Continental Engineering Services


Linear Winding: Design and Industrialisation

Neil Cheeseman, Segment Chief Engineer – Driveline & Electrification, Continental Engineering Services **Lorenzo Veglia**, Sales manager – Electric Motor division, GROB Italy

An Engineering Service Provider with a Global Footprint

21 Locations

European Union

- > Frankfurt (DEU)

- > Markdorf (DEU)

- > Porto (PRT)

United Kingdom

- > Timisoara (ROU)
- > Toulouse (FRA)

North America

Asia

9/4/2024

- > Yokohama (JPN)

Continental Engineering Services

SERVICE PORTFOLIO

Consulting & Specialist Support

- Software Consulting
-) Data Services
- Simulation Engineering
- Security & Privacy
- > Research & Development Process Consulting
- Functional Safety Management
- Cloud
- Data Literacy

Manufacturing

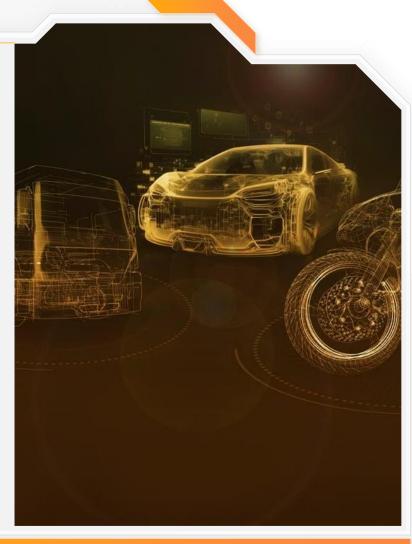
- Samples, Electronics & Mechanics
- Series Production
- > Build-to-print
- > Special projects (automotive & beyond)

Integration

- System Integration
- Virtual Integration
- Vehicle Integration & Workshops
- Software Integration

Development

- System Engineering
- Software Engineering
- > Electric Machine Design
- Hardware & Mechanical Engineering
- Noise-Vibration-Harshness


Concept Creation

- System Conception
- > Requirement Engineering
- > E/E Architecture
- Innovation Engineering

Testing & Simulation

- 3D Thermal Simulation and Structure Analysis
- Test Consulting Services
- Driveline Performance Simulation
- Brake Systems Test and Validation
- Virtual Vehicle Testing

Machine Topology and Optimization

Generally, comparing different electrical machine types is not a straightforward task since for each machine many variables exist, and it is difficult to define which variables should be kept constant and which may vary

Axial Flux Machine (AF) vs Radial Flux Machines (RF)

Torque density @ 1–3 krpm speed	AF > RF
Performance @ high speed	AF < RF
Better heat dissipation	AF < RF
Enhanced durability & Demanding industrial applications	AF < RF
Better performance for Poles > 10	AF > RF
Mechanical – limited axial length	AF > RF
High Speed application	AF < RF

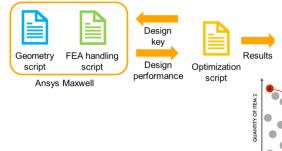
Fractional Slot Machine (FS) vs Integer Slot Machine (IS)

Efficiency (low speed)	FS > IS
Torque density	FS > IS
Short End-Winding	FS > IS
NVH Issues	FS > IS

Thin Wire Winding (TW) vs Bar Wire Winding (BW)

High Speed (High Freq.) Operation (AC Loss dependent)	TW > BW
Low Speed (Low Freq.) Operation (DC Loss dependent)	TW < BW
Variable Speed (Variable Freq.) Operation (AC vs DC Loss dependent)	Case-dependent
Slot Fill Factor	TW < BW (TW up to 44% / 62%) (BW up to 65-75%)
Production cost	TW < BW

Optimization and Machine Topology



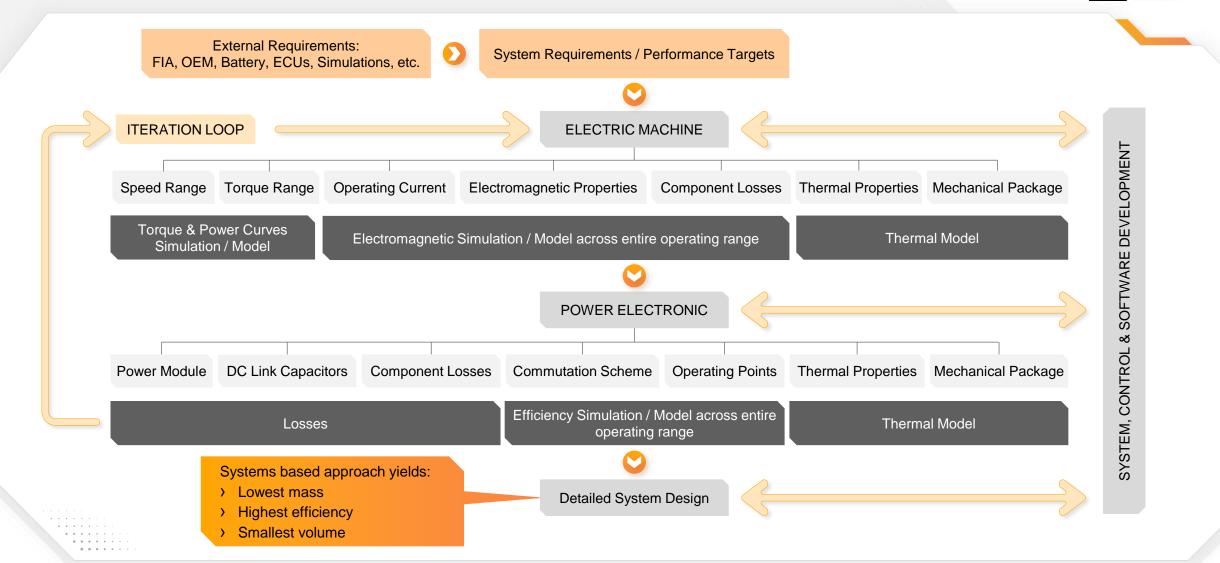
- Finding a good design to meet the costumer performance requirements within a target volume
- Evolutionary Computation provide efficient algorithms that may find a set of optimal designs in some hours to a few days

Segmented stator benefits

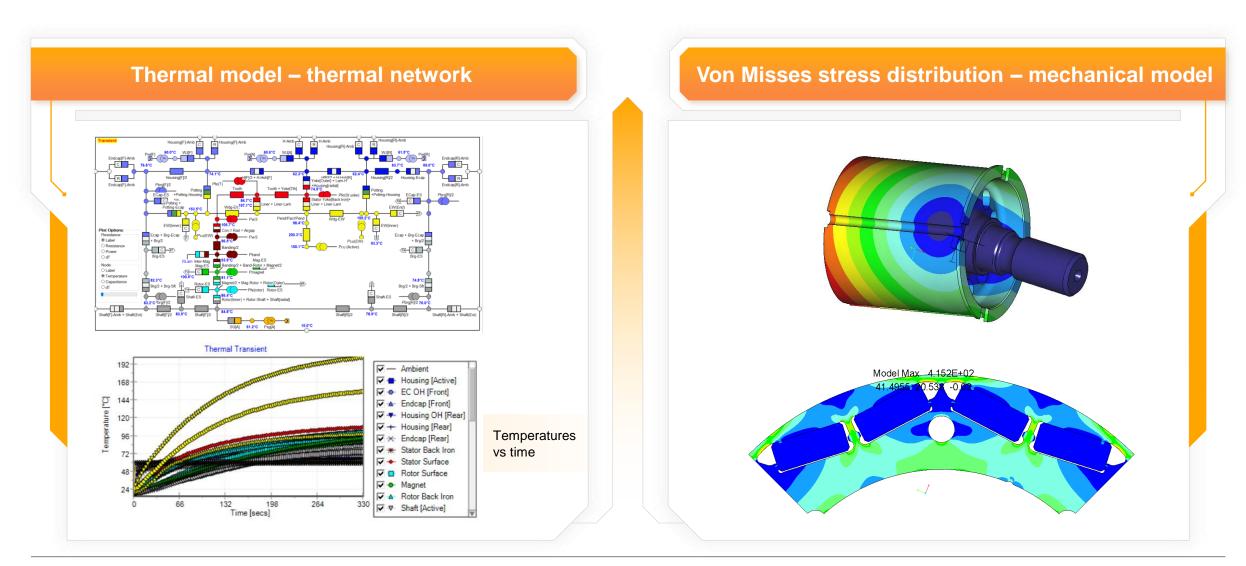
- A. Back iron & set of teeth.

 It does make sense mainly for high performance & high-speed & high frequency & compressed coils
- B. T-segmented stator
 T-segment stator & precision wound
 coils solutions. Stator does not have
 a separate back iron. Each tooth has
 a part of back iron, the segment
 shape reminds letter T

Winding construction images


Back iron & teeth & compressed coils

Bar & hairpin winding


Machine Topology and Optimization

Machine Topology and Optimization

Services To Support Linear Winding Industrialisation

- Customer's specification discussion
- > Entire design process discussion
- Electric machine design: Electromagnetics
 - Permanent Magnet Motors
 - Induction Motors
 - Wound Rotor Synchronous Motors
- Electric machine design: Mechanics
- Electric machine design: Power Electronics
- Electric machine design: Systems
- Electric machine design: Thermo-Magnetics

Winding design and analysis

- Coil design
- End-winding design
- Winding design
- Thermal simulation
- Thermal measurement
- > Electric test and measurements
- Compressed coils manufacturing
- Failure diagnosis

Development - Experience - Reliability

Linear Winding Webinar CONTENT

GROB OVERVIEW

- Processes for electric transition
- Technologies for stators
- Technologies for rotors

LINEAR WINDING PROCESSES

- Radial flux round wire on core
- · Axial flux round wire on core
- · Radial flux flat wire air coil
- Axial flux flat wire air coil

GROB GROUP AT A GLANCE

Employees

~ 8,800

Orders received

EUR 2.0 billion

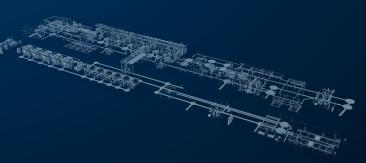
Total output

EUR 1.8 billion

6 plants

15 sales & service subsidiaries

GROB PROCESSES FOR ELECTRIC TRANSITION


MOTOR PRODUCTION:

- Stator lines
- Impregnation systems
- Rotor lines

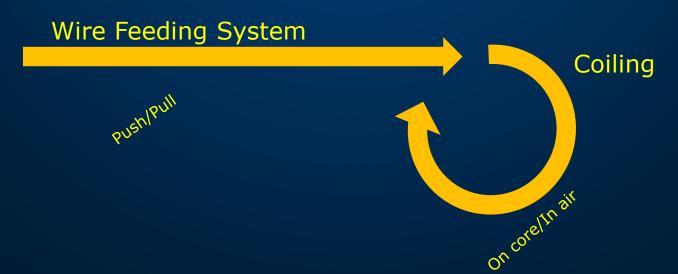
System technology for stator/rotor assembly Layout examples

POWER SOURCES PRODUCTION:

- Batteries assembly lines (cell, modules, packs)
- Fuel cell stacking lines

System technology for battery pack assembly

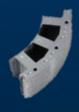
GROB WINDING TECHNOLOGIES STATOR AND ROTOR

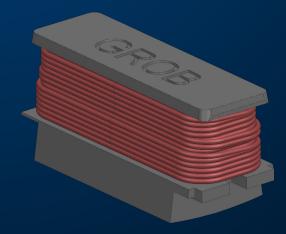


GENERAL CONCEPT

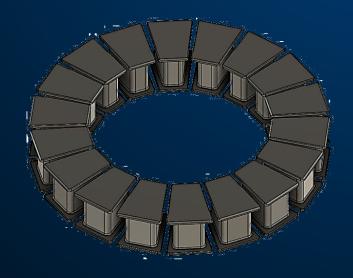
Meaning of Linear Winding:

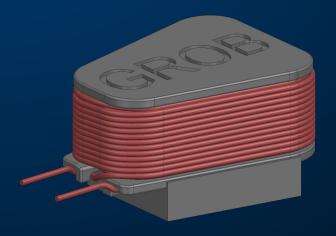
Winding of single coils with linear feeding of the wire




RADIAL FLUX ROUND WIRE ON CORE

Stator type	Segmented
Wire type	Round





AXIAL FLUX ROUND WIRE ON CORE

Stator type	Segmented
Wire type	Round

RADIAL FLUX/AXIAL FLUX ROUND WIRE ON CORE

RADIAL FLUX/AXIAL FLUX ROUND WIRE ON CORE

Stand-alone machine

- with manual or automatic loading/unloading
- with Light curtain / Automatic door / Manual

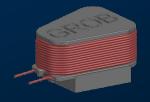
Full-automatic line

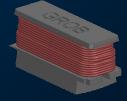
Flexibility at its highest with 3-axis concept with servo motors, ball screws, and ball rail systems

Up to four winding spindles

Multiple part-clamping options

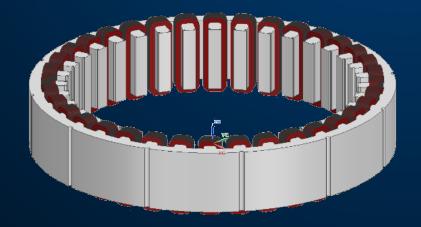
- Fixed clamping system
- Fast changeable clamping system via indexing unit
- Clamping via form closure on tooling and the pressing


Multiple gripping and cutting options


Independent gripping and cutting system with servo drives Gripping and cutting unit moves with the needle winding

Wire tensioner in-house developed

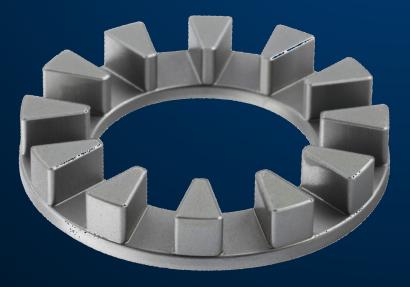
Insulation with plastic support or paper



RADIAL FLUX FLAT WIRE AIR COIL

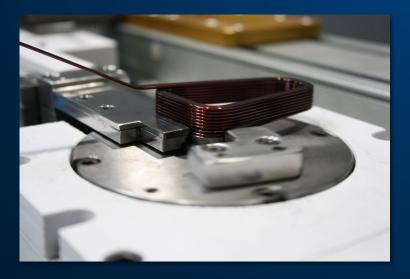
11

Stator type	Solid
Wire type	Flat



AXIAL FLUX/RADIAL FLAT WIRE AIR COIL

Stator type	Solid
Wire type	Flat



AXIAL FLUX FLAT WIRE AIR COILS

- √ Stand-alone machine
 - > with manual or automatic unloading
 - with Light curtain / Automatic door / Manual door
- ✓ Suitable to be inserted in Full-automatic line
- ✓ Flexibility at its highest, change of coil shape by pressing one button
- ✓ Possibility to install many machines in parallel
- ✓ Stripping can be included in the feeding line (masked time)
- √ Wire straightening in-house developed

AXIAL FLUX FLAT WIRE ON CORE

Stator type	Segmented
Wire type	Flat

Technology in development at **GROB Italy**

Follow us on:

Linkedin: www.linkedin.com/company/grob-italy/

Youtube: www.youtube.com/@Grobgroup

CONCLUSION

RELIABILITY

GROB Group aim to stay in deep contact with all customers involved in the electric transition.

EXPERIENCE

Engineering support is available by **GROB Italy**, for samples, process/product industrialization.

DEVELOPMENT

Other technologies for linear winding are in development.

GROB ITALY S.R.L.

Via Sergio Marchionne 3 11040 Pianezza (TO) Italy

GROB-WERKE GMBH & CO. KG

Industriestraße 4 87719 Mindelheim Deutschland

www.grobgroup.com

d @ in □ %

